enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  3. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...

  4. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 or greater than 1); the ...

  5. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    This suggests taking the first basis vector p 0 to be the negative of the gradient of f at x = x 0. The gradient of f equals Ax − b. Starting with an initial guess x 0, this means we take p 0 = b − Ax 0. The other vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method.

  9. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors.Geometric algebra is built out of two fundamental operations, addition and the geometric product.