enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wahlund effect - Wikipedia

    en.wikipedia.org/wiki/Wahlund_effect

    This point always has a lower heterozygosity (y value) than the corresponding (in allele frequency p) Hardy-Weinberg equilibrium. In population genetics, the Wahlund effect is a reduction of heterozygosity (that is when an organism has two different alleles at a locus) in a population caused by subpopulation structure.

  3. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    The HardyWeinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the HardyWeinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.

  4. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/HardyWeinberg_principle

    In population genetics, the HardyWeinberg principle, also known as the HardyWeinberg equilibrium, model, theorem, or law, states that allele and genotype frequencies in a population will remain constant from generation to generation in the absence of other evolutionary influences.

  5. Genetic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Genetic_equilibrium

    Genetic equilibrium describes a theoretical state that is the basis for determining whether and in what ways populations may deviate from it. HardyWeinberg equilibrium is one theoretical framework for studying genetic equilibrium. It is commonly studied using models that take as their assumptions those of Hardy-Weinberg, meaning:

  6. de Finetti diagram - Wikipedia

    en.wikipedia.org/wiki/De_Finetti_diagram

    A de Finetti diagram. The curved line is the expected HardyWeinberg frequency as a function of p.. A de Finetti diagram is a ternary plot used in population genetics.It is named after the Italian statistician Bruno de Finetti (1906–1985) and is used to graph the genotype frequencies of populations, where there are two alleles and the population is diploid.

  7. Allele frequency - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency

    The HardyWeinberg law describes the expected equilibrium genotype frequencies in a diploid population after random mating. Random mating alone does not change allele frequencies, and the HardyWeinberg equilibrium assumes an infinite population size and a selectively neutral locus. [1]

  8. Additive disequilibrium and z statistic - Wikipedia

    en.wikipedia.org/wiki/Additive_Disequilibrium...

    Similarly, we can also test for Hardy Weinberg Equilibrium using the z-statistic, which uses information from the estimate of additive disequilibrium to determine significance. When using the z- statistic, however, the goal is to transform the statistic in a way such that asymptotically , it has a standard normal distribution .

  9. Wilhelm Weinberg - Wikipedia

    en.wikipedia.org/wiki/Wilhelm_Weinberg

    Wilhelm Weinberg (25 December 1862 – 27 November 1937) was a German obstetrician-gynecologist, practicing in Stuttgart, who in a 1908 paper, published in German in Jahresheft des Vereins für vaterländische Naturkunde in Württemberg (The Annals of the Society of National Natural History in Württemberg), expressed the concept that would later come to be known as the HardyWeinberg principle.