enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/HardyWeinberg_principle

    The 5% significance level for 1 degree of freedom is 3.84, and since the χ 2 value is less than this, the null hypothesis that the population is in HardyWeinberg frequencies is not rejected. Fisher's exact test (probability test)

  3. Genetic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Genetic_equilibrium

    Genetic equilibrium itself, whether Hardy-Weinberg or otherwise, provides the groundwork for a number of applications, in including population genetics, conservation and evolutionary biology. With the rapid increase in whole genome sequences available as well as the proliferation of anonymous markers, models have been used to extend the initial ...

  4. Wahlund effect - Wikipedia

    en.wikipedia.org/wiki/Wahlund_effect

    This point always has a lower heterozygosity (y value) than the corresponding (in allele frequency p) Hardy-Weinberg equilibrium. In population genetics , the Wahlund effect is a reduction of heterozygosity (that is when an organism has two different alleles at a locus) in a population caused by subpopulation structure.

  5. Idealised population - Wikipedia

    en.wikipedia.org/wiki/Idealised_population

    In 1908, G. H. Hardy and Wilhelm Weinberg modeled an idealised population to demonstrate that in the absence of selection, migration, random genetic drift, allele frequencies stay constant over time, and that in the presence of random mating, genotype frequencies are related to allele frequencies according to a binomial square principle called the Hardy-Weinberg law.

  6. Genotype frequency - Wikipedia

    en.wikipedia.org/wiki/Genotype_frequency

    The HardyWeinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the HardyWeinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.

  7. Allele frequency - Wikipedia

    en.wikipedia.org/wiki/Allele_frequency

    The HardyWeinberg law describes the expected equilibrium genotype frequencies in a diploid population after random mating. Random mating alone does not change allele frequencies, and the HardyWeinberg equilibrium assumes an infinite population size and a selectively neutral locus.

  8. Introduction to evolution - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_evolution

    A population that satisfies these conditions is said to be in HardyWeinberg equilibrium. In particular, Hardy and Weinberg showed that dominant and recessive alleles do not automatically tend to become more and less frequent respectively, as had been thought previously. The conditions for Hardy-Weinberg equilibrium include that there must be ...

  9. Wilhelm Weinberg - Wikipedia

    en.wikipedia.org/wiki/Wilhelm_Weinberg

    Wilhelm Weinberg (25 December 1862 – 27 November 1937) was a German obstetrician-gynecologist, practicing in Stuttgart, who in a 1908 paper, published in German in Jahresheft des Vereins für vaterländische Naturkunde in Württemberg (The Annals of the Society of National Natural History in Württemberg), expressed the concept that would later come to be known as the HardyWeinberg principle.