enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  3. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    Restricted Boltzmann machines (RBMs) are often used as a building block for multilayer learning architectures. [ 6 ] [ 24 ] An RBM can be represented by an undirected bipartite graph consisting of a group of binary hidden variables , a group of visible variables, and edges connecting the hidden and visible nodes.

  4. Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_machine

    In this example there are 3 hidden units (blue) and 4 visible units (white). This is not a restricted Boltzmann machine. A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results.

  5. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.

  6. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  7. Category:Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Category:Supervised_learning

    The following 6 pages are in this category, out of 6 total. ... Restricted Boltzmann machine; V. Variational autoencoder

  8. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    It uses a restricted Boltzmann machine to model each new layer of higher level features. Each new layer guarantees an increase on the lower-bound of the log likelihood of the data, thus improving the model, if trained properly.

  9. Quantum machine learning - Wikipedia

    en.wikipedia.org/wiki/Quantum_machine_learning

    This can reduce the time required to train a deep restricted Boltzmann machine, and provide a richer and more comprehensive framework for deep learning than classical computing. [69] The same quantum methods also permit efficient training of full Boltzmann machines and multi-layer, fully connected models and do not have well-known classical ...

  1. Related searches restricted boltzmann machine vs autoencoder in python 1 6 4 drivers dpinst x86 exe

    restricted boltzmann machine wikiboltzmann machine problems
    restricted boltzmann machines diagramrestricted boltzmann weight matrix