Search results
Results from the WOW.Com Content Network
The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...
A similar construction shows AC > DC, establishing the theorem. An alternative proof (also based upon the triangle postulate) proceeds by considering three positions for point B: [10] (i) as depicted (which is to be proved), or (ii) B coincident with D (which would mean the isosceles triangle had two right angles as base angles plus the vertex ...
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
Steiner–Lehmus theorem (triangle geometry) Steinhaus theorem (measure theory) Steinitz theorem (graph theory) Stewart's theorem (plane geometry) Stinespring factorization theorem (operator theory) Stirling's theorem (mathematical analysis) Stokes's theorem (vector calculus, differential topology) Stolper–Samuelson theorem
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
As stated above, Thales's theorem is a special case of the inscribed angle theorem (the proof of which is quite similar to the first proof of Thales's theorem given above): Given three points A, B and C on a circle with center O, the angle ∠ AOC is twice as large as the angle ∠ ABC. A related result to Thales's theorem is the following:
There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [8] or as a special case of De Gua's theorem (for the particular case of acute triangles), [9] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.