Search results
Results from the WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
Genetic variance is a concept outlined by the English biologist and statistician Ronald Fisher in his fundamental theorem of natural selection. In his 1930 book The Genetical Theory of Natural Selection, Fisher postulates that the rate of change of biological fitness can be calculated by the genetic variance of the fitness itself. [1]
Fisher's fundamental theorem of natural selection is an idea about genetic variance [1] [2] in population genetics developed by the statistician and evolutionary biologist Ronald Fisher. The proper way of applying the abstract mathematics of the theorem to actual biology has been a matter of some debate, however, it is a true theorem.
Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [ 4 ]
Biostatistics (also known as biometry) is a branch of statistics that applies statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments , the collection and analysis of data from those experiments and the interpretation of the results.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
If the biased sample variance (the second central moment of the sample, which is a downward-biased estimate of the population variance) is used to compute an estimate of the population's standard deviation, the result is = = (¯).