Search results
Results from the WOW.Com Content Network
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
The STATCOM also provides better reactive power support at low AC voltages than an SVC, since the reactive power from a STATCOM decreases linearly with the AC voltage (the current can be maintained at the rated value even down to low AC voltage), as opposed to power being a function of a square of voltage for SVC. [38]
This can lead to a relatively cost-effective solution where the SVC only requires capacitive reactive power, although a disadvantage is that the reactive power output can only be varied in steps. Continuously variable reactive power output is only possible where the SVC contains a TCR or another variable element such as a STATCOM.
The most common shunt compensation device is the Static VAR Compensator (SVC). [14] SVCs use power electronics, generally Thyristors, to switch fixed capacitors and reactors. These are referred to as Thyristor Switched Capacitor (TSC) and Thyristor Switched Reactor (TSR), respectively.
The task of additional reactive power compensation (also known as voltage compensation) is assigned to compensating devices: [7] passive (either permanently connected or switched) sinks of reactive power (e.g., shunt reactors that are similar to transformers in construction, with a single winding and iron core [9]).
A unified power flow controller (UPFC) is an electrical device for providing fast-acting reactive power compensation on high-voltage electricity transmission networks. It uses a pair of three-phase controllable bridges to produce current that is injected into a transmission line using a series transformer. [ 1 ]
On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The added current flowing to supply reactive power creates additional losses in the power system. In an industrial plant, synchronous motors can be used to supply some of the reactive power required by induction motors.
This feature can provide controllable voltage compensation. [2] In addition, SSSC is able to reverse the power flow by injecting a sufficiently large series reactive compensating voltage. [2] The SSSC consists of a voltage source converter (VSC) connected in series with the transmission line through a transformer.