Search results
Results from the WOW.Com Content Network
The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase.
Fuel efficiency is dependent on many parameters of a vehicle, including its engine parameters, aerodynamic drag, weight, AC usage, fuel and rolling resistance. There have been advances in all areas of vehicle design in recent decades. Fuel efficiency of vehicles can also be improved by careful maintenance and driving habits. [3]
Premium efficiency, when used in reference to specific types of Electric Motors (with a rotating shaft), is a class of motor efficiency.. As part of a concerted effort worldwide to reduce energy consumption, CO 2 emissions and the impact of industrial operations on the environment, various regulatory authorities in many countries have introduced, or are planning, legislation to encourage the ...
The thermal efficiency of a theoretical cycle cannot exceed that of the Carnot cycle, whose efficiency is determined by the difference between the lower and upper operating temperatures of the engine. The upper operating temperature of an engine is limited by two main factors; the thermal operating limits of the materials, and the auto-ignition ...
A consumption map or efficiency map [1] is a chart that displays the brake-specific fuel consumption of an internal combustion engine at a given rotational speed and mean effective pressure, in grams per kilowatt-hour (g/kWh). The map contains each possible condition combining rotational speed and mean effective pressure.
Combustion efficiency refers to the effectiveness of the burning process in converting fuel into heat energy. It is measured by the proportion of fuel that is efficiently burned and converted into useful heat, while minimizing the emissions of pollutants.
Brake-specific fuel consumption (BSFC) is a measure of the fuel efficiency of any prime mover that burns fuel and produces rotational, or shaft power. It is typically used for comparing the efficiency of internal combustion engines with a shaft output. It is the rate of fuel consumption divided by the power produced.
1952 Shell Oil film showing the development of the diesel engine from 1877. The diesel engine, named after the German engineer Rudolf Diesel, is an internal combustion engine in which ignition of diesel fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression; thus, the diesel engine is called a compression-ignition engine (CI engine).