Search results
Results from the WOW.Com Content Network
The sum of its factors (including one and itself) sum to 360, exactly three times 120. Perfect numbers are order two ( 2-perfect ) by the same definition. 120 is the sum of a twin prime pair (59 + 61) and the sum of four consecutive prime numbers (23 + 29 + 31 + 37), four consecutive powers of two (8 + 16 + 32 + 64), and four consecutive powers ...
The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k). m is smoother than n if the largest prime factor of m is below the largest of n.
101–120 547: 557: 563: 569: 571: ... write the prime factorization of n in base 10 and concatenate the factors; iterate ... Primes that are not the sum of a smaller ...
Demonstration, with Cuisenaire rods, of the abundance of the number 12. In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number.
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...
Sigma function σ 1 (n) up to n = 250 Prime-power factors. In number theory, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...