enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]

  3. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [ 1 ] [ 2 ] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments , numerical simulations or approximate methods in order to obtain useful information on the flow.

  4. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  5. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    Oseen's work is based on the experiments of G.G. Stokes, who had studied the falling of a sphere through a viscous fluid. He developed a correction term, which included inertial factors, for the flow velocity used in Stokes' calculations, to solve the problem known as Stokes' paradox. His approximation leads to an improvement to Stokes ...

  6. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  7. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  8. Magnetic tweezers - Wikipedia

    en.wikipedia.org/wiki/Magnetic_tweezers

    Since the Reynolds number for the system is very low, it is possible to apply Stokes law to calculate the friction force which is in equilibrium with the force exerted by the magnets: =. The velocity can be determined by using the recorded velocity values. The force obtained via this formula can then be related to a given configuration of the ...

  9. Oil drop experiment - Wikipedia

    en.wikipedia.org/wiki/Oil_drop_experiment

    The drag force acting on the drop can then be worked out using Stokes' law: F u = 6 π r η v 1 , {\displaystyle F_{u}=6\pi r\eta v_{1},\,} where v 1 is the terminal velocity (i.e. velocity in the absence of an electric field) of the falling drop, η is the viscosity of the air, and r is the radius of the drop.