enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...

  3. Oseledets theorem - Wikipedia

    en.wikipedia.org/wiki/Oseledets_theorem

    A prominent example of a cocycle is given by the matrix J t in the theory of Lyapunov exponents. In this special case, the dimension n of the matrices is the same as the dimension of the manifold X. For any cocycle C, the determinant det C(x, t) is a one-dimensional cocycle.

  4. Lyapunov dimension - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_dimension

    The exact limit values of finite-time Lyapunov exponents, if they exist and are the same for all , are called the absolute ones [3] {+ (,)} = {()} {} and used in the Kaplan–Yorke formula. Examples of the rigorous use of the ergodic theory for the computation of the Lyapunov exponents and dimension can be found in. [ 11 ] [ 12 ] [ 13 ]

  5. Chaotic mixing - Wikipedia

    en.wikipedia.org/wiki/Chaotic_mixing

    The Lyapunov exponent of a flow is a unique quantity, that characterizes the asymptotic separation of fluid particles in a given flow. It is often used as a measure of the efficiency of mixing, since it measures how fast trajectories separate from each other because of chaotic advection. The Lyapunov exponent can be computed by different methods:

  6. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  7. Kaplan–Yorke conjecture - Wikipedia

    en.wikipedia.org/wiki/Kaplan–Yorke_conjecture

    In applied mathematics, the Kaplan–Yorke conjecture concerns the dimension of an attractor, using Lyapunov exponents. [ 1 ] [ 2 ] By arranging the Lyapunov exponents in order from largest to smallest λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n {\displaystyle \lambda _{1}\geq \lambda _{2}\geq \dots \geq \lambda _{n}} , let j be the largest index for which

  8. Lyapunov optimization - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_optimization

    Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.

  9. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).