enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...

  6. Products in algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Products_in_algebraic_topology

    1 The cross product. 2 The cap product. 3 The slant product. 4 The cup product. 5 See also. 6 References. Toggle the table of contents. Products in algebraic topology ...

  7. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).

  8. Crossed product - Wikipedia

    en.wikipedia.org/wiki/Crossed_product

    (Note that the von Neumann algebra crossed product is usually larger than the algebraic crossed product discussed above; in fact it is some sort of completion of the algebraic crossed product.) In physics, this structure appears in presence of the so called gauge group of the first kind. G is the gauge group, and N the "field" algebra.

  9. Künneth theorem - Wikipedia

    en.wikipedia.org/wiki/Künneth_theorem

    The map from the sum to the homology group of the product is called the cross product. More precisely, there is a cross product operation by which an i -cycle on X and a j -cycle on Y can be combined to create an ( i + j ) {\displaystyle (i+j)} -cycle on X × Y {\displaystyle X\times Y} ; so that there is an explicit linear mapping defined from ...