Search results
Results from the WOW.Com Content Network
A simple cubic crystal has only one lattice constant, the distance between atoms, but in general lattices in three dimensions have six lattice constants: the lengths a, b, and c of the three cell edges meeting at a vertex, and the angles α, β, and γ between those edges. The crystal lattice parameters a, b, and c have the
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector. Due to elastic scattering | | = | |, three vectors.
An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information , aka Holographic principle .
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.
Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]
In lattice perturbation theory the scattering matrix is expanded in powers of the lattice spacing, a. The results are used primarily to renormalize Lattice QCD Monte-Carlo calculations. In perturbative calculations both the operators of the action and the propagators are calculated on the lattice and expanded in powers of a.
The Hubbard model is based on the tight-binding approximation from solid-state physics, which describes particles moving in a periodic potential, typically referred to as a lattice. For real materials, each lattice site might correspond with an ionic core, and the particles would be the valence electrons of these ions.
Although most lattice field theories are not exactly solvable, they are immensely appealing due to their feasibility for computer simulation, often using Markov chain Monte Carlo methods. One hopes that, by performing simulations on larger and larger lattices, while making the lattice spacing smaller and smaller, one will be able to recover the ...