Search results
Results from the WOW.Com Content Network
The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...
In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
Varignon's theorem is a theorem of French mathematician Pierre Varignon (1654–1722), published in 1687 in his book Projet d'une nouvelle mécanique.The theorem states that the torque of a resultant of two concurrent forces about any point is equal to the algebraic sum of the torques of its components about the same point.
The x direction may be chosen to point down the ramp in an inclined plane problem, for example. In that case the friction force only has an x component, and the normal force only has a y component. The force of gravity would then have components in both the x and y directions: mgsin(θ) in the x and mgcos(θ) in the y, where θ is the angle ...
These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space. Vectors play an important role in physics: the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors. [7]
The inverse square law behind the Kepler problem is the most important central force law. [1]: 92 The Kepler problem is important in celestial mechanics, since Newtonian gravity obeys an inverse square law. Examples include a satellite moving about a planet, a planet about its sun, or two binary stars about each other.
F′ = F (the force on a particle is the same in any inertial reference frame) the speed of light is not a constant in classical mechanics, nor does the special position given to the speed of light in relativistic mechanics have a counterpart in classical mechanics. For some problems, it is convenient to use rotating coordinates (reference frames).