enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Breeder reactor - Wikipedia

    en.wikipedia.org/wiki/Breeder_reactor

    China initiated a research and development project in thorium molten-salt thermal breeder-reactor technology (liquid fluoride thorium reactor), formally announced at the Chinese Academy of Sciences annual conference in 2011. Its ultimate target was to investigate and develop a thorium-based molten salt nuclear system over about 20 years.

  3. Liquid fluoride thorium reactor - Wikipedia

    en.wikipedia.org/.../Liquid_fluoride_thorium_reactor

    A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.

  4. Thorium-based nuclear power - Wikipedia

    en.wikipedia.org/wiki/Thorium-based_nuclear_power

    A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...

  5. Economics of nuclear power plants - Wikipedia

    en.wikipedia.org/wiki/Economics_of_nuclear_power...

    Doubling the price of uranium would add about 10% to the cost of electricity produced in existing nuclear plants, and about half that much to the cost of electricity in future power plants. [53] The cost of raw uranium contributes about $0.0015/kWh to the cost of nuclear electricity, while in breeder reactors the uranium cost falls to $0.000015 ...

  6. Shippingport Atomic Power Station - Wikipedia

    en.wikipedia.org/wiki/Shippingport_Atomic_Power...

    It kept the same seed-and-blanket design, but the seed was now uranium-233 and the blanket was made of thorium. [8] Being a breeder reactor, it had the ability to transmute relatively inexpensive thorium to uranium-233 as part of its fuel cycle. [9] The breeding ratio attained by Shippingport's third core was 1.01. [8]

  7. Thorium fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Thorium_fuel_cycle

    Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232 Th absorbs neutrons to produce 233 U. This parallels the process in uranium breeder reactors whereby fertile 238 U absorbs neutrons to form fissile 239 Pu. Depending on the design of the reactor and fuel cycle, the ...

  8. TMSR-LF1 - Wikipedia

    en.wikipedia.org/wiki/TMSR-LF1

    ^Location: the LF1 reactor is sited within an industrial park located in Hongshagang (town), Minqin (county), Wuwei (prefecture), Gansu (province), China. As per official documentation, the TMSR-LF1 site is located at 38°57'31" N, 102°36'55" E.

  9. Fuji Molten Salt Reactor - Wikipedia

    en.wikipedia.org/wiki/Fuji_Molten_Salt_Reactor

    As a breeder reactor, it converts thorium into the nuclear fuel uranium-233. To achieve reasonable neutron economy, the chosen single-salt design results in significantly larger feasible size [ clarification needed ] than a two-salt reactor (where blanket is separated from core, which involves graphite-tube manufacturing/sealing complications).