Search results
Results from the WOW.Com Content Network
If the shift in is expressed as a fraction of the period, and then scaled to an angle spanning a whole turn, one gets the phase shift, phase offset, or phase difference of relative to . If F {\displaystyle F} is a "canonical" function for a class of signals, like sin ( t ) {\displaystyle \sin(t)} is for all sinusoidal signals, then φ ...
The linear combination, or harmonic addition, of sine and cosine waves is equivalent to a single sine wave with a phase shift and scaled amplitude, [33] [34] a cos x + b sin x = c cos ( x + φ ) {\displaystyle a\cos x+b\sin x=c\cos(x+\varphi )}
The same sinusoidal plane wave above can also be expressed in terms of sine instead of cosine using the elementary identity = (+ /) (,) = ((^) + ′) where ′ = + /.Thus the value and meaning of the phase shift depends on whether the wave is defined in terms of sine or co-sine.
The input sinusoidal voltage is usually defined to have zero phase, meaning that it is arbitrarily chosen as a convenient time reference. So the phase difference is attributed to the current function, e.g. sin(2 π ft + φ), whose orthogonal components are sin(2 π ft) cos(φ) and sin(2 π ft + π /2) sin(φ), as we have seen.
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
The corresponding time-domain function for the phase of an exponential chirp is the integral of the frequency: = + = + = + ( ()) where is the initial phase (at =). The corresponding time-domain function for a sinusoidal exponential chirp is the sine of the phase in radians: x ( t ) = sin [ ϕ 0 + 2 π f 0 ( T k t T ln ( k ...
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...
The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a ...