enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b] g = The local acceleration due to gravity (m/s 2). It is useful to present head loss per length of pipe (dimensionless): = =, where L is the pipe length (m).

  4. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    S is the slope of the energy line (head loss per length of pipe or h f /L) The equation is similar to the Chézy formula but the exponents have been adjusted to better fit data from typical engineering situations. A result of adjusting the exponents is that the value of C appears more like a constant over a wide range of the other parameters. [8]

  5. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...

  6. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Given a starting node, we work our way around the loop in a clockwise fashion, as illustrated by Loop 1. We add up the head losses according to the Darcy–Weisbach equation for each pipe if Q is in the same direction as our loop like Q1, and subtract the head loss if the flow is in the reverse direction, like Q4.

  7. Minor losses in pipe flow - Wikipedia

    en.wikipedia.org/wiki/Minor_Losses_in_pipe_flow

    After both minor losses and friction losses have been calculated, these values can be summed to find the total head loss. Equation for total head loss, , can be simplified and rewritten as: = [() + (,)] [5] = Frictional head loss = Downstream velocity = Gravity of Earth

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.