Search results
Results from the WOW.Com Content Network
The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
1/8 space-filler, 2As + 1B Tetrahedron 1 self dual, unit volume Coupler 1 space filling oblate octa Cuboctahedron 2.5 edges 1/2, vol. = 1/8 of 20 Duo-Tet Cube 3 24 MITEs Octahedron 4 dual of cube, spacefills w/ tet Rhombic Triacontahedron 5 radius = ~0.9994, vol. = 120 Ts Rhombic Triacontahedron 5+ radius = 1, vol. = 120 Es Rhombic Dodecahedron 6
The rhombic dodecahedron, generated from four line segments, no two of which are parallel to a common plane. Its most symmetric form is generated by the four long diagonals of a cube. [2] It tiles space to form the rhombic dodecahedral honeycomb. The elongated dodecahedron, generated from five line segments, with two triples of coplanar segments.
The regular hyperbolic honeycombs thus include two with four or five dodecahedra meeting at each edge; their dihedral angles thus are π/2 and 2π/5, both of which are less than that of a Euclidean dodecahedron. Apart from this effect, the hyperbolic honeycombs obey the same topological constraints as Euclidean honeycombs and polychora.
[1] [2] There are different truncations of a rhombic triacontahedron into a topological rhombicosidodecahedron: Prominently its rectification (left), the one that creates the uniform solid (center), and the rectification of the dual icosidodecahedron (right), which is the core of the dual compound.
The cC is also inaccurately called a truncated rhombic dodecahedron, although that name rather suggests a rhombicuboctahedron. The cC can more accurately be called a tetratruncated rhombic dodecahedron, because only the (6) order-4 vertices of the rhombic dodecahedron are truncated. The dual of the chamfered cube is the tetrakis cuboctahedron.
A regular polyhedral compound can be defined as a compound which, like a regular polyhedron, is vertex-transitive, edge-transitive, and face-transitive.Unlike the case of polyhedra, this is not equivalent to the symmetry group acting transitively on its flags; the compound of two tetrahedra is the only regular compound with that property.