Search results
Results from the WOW.Com Content Network
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
Linear regression models are often fitted using the least squares approach, but they may also be fitted in other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations regression), or by minimizing a penalized version of the least squares cost function as in ridge regression (L 2-norm penalty) and ...
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .
As described in ordinary least squares, least squares is widely used because the estimated function (, ^) approximates the conditional expectation (|). [7] However, alternative variants (e.g., least absolute deviations or quantile regression ) are useful when researchers want to model other functions f ( X i , β ) {\displaystyle f(X_{i},\beta )} .
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model. It is used when there is a non-zero amount of correlation between the residuals in the regression model.
This solution has been rediscovered in different disciplines and is variously known as standardised major axis (Ricker 1975, Warton et al., 2006), [14] [15] the reduced major axis, the geometric mean functional relationship (Draper and Smith, 1998), [16] least products regression, diagonal regression, line of organic correlation, and the least ...