Search results
Results from the WOW.Com Content Network
EC coupling results in the sequential contraction of the heart muscles that allows blood to be pumped, first to the lungs (pulmonary circulation) and then around the rest of the body (systemic circulation) at a rate between 60 and 100 beats every minute, when the body is at rest. [2]
The rapid influx of calcium into the cell signals for the cells to contract. When the calcium intake travels through an entire muscle, it will trigger a united muscular contraction. This process is known as excitation-contraction coupling. [2] This contraction pushes blood inside the heart and from the heart to other regions of the body.
The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. [1] It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, called systole. [1]
The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole, following a period of robust contraction and pumping of blood, dubbed systole. After emptying, the heart ...
An increase in sympathetic stimulation to the heart increases contractility and heart rate. An increase in contractility tends to increase stroke volume and thus a secondary increase in preload. An increase in preload results in an increased force of contraction by Starling's law of the heart; this does not require a change in contractility.
One of the simplest methods of assessing the heart's condition is to listen to it using a stethoscope. [1] In a healthy heart, there are only two audible heart sounds, called S1 and S2. The first heart sound S1, is the sound created by the closing of the atrioventricular valves during ventricular contraction and is normally described as "lub".
Troponin, or the troponin complex, is a complex of three regulatory proteins (troponin C, troponin I, and troponin T) that are integral to muscle contraction [2] in skeletal muscle and cardiac muscle, but not smooth muscle.
It employs pacemaker cells that produce electrical impulses, known as cardiac action potentials, which control the rate of contraction of the cardiac muscle, that is, the heart rate. In most humans, these cells are concentrated in the sinoatrial (SA) node, the primary pacemaker, which regulates the heart’s sinus rhythm.