Search results
Results from the WOW.Com Content Network
A typical load case for design for serviceability (characteristic load cases; SLS) is: 1.0 x Dead Load + 1.0 x Live Load. Different load cases would be used for different loading conditions. For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left ...
Live loads, sometimes also referred to as probabilistic loads, include all the forces that are variable within the object's normal operation cycle not including construction or environmental loads. Roof and floor live loads are produced during maintenance by workers, equipment and materials, and during the life of the structure by movable ...
A clear distinction is made between the ultimate state (US) and the ultimate limit state (ULS). The Ultimate State is a physical situation that involves either excessive deformations leading and approaching collapse of the component under consideration or the structure as a whole, as relevant, or deformations exceeding pre-agreed values.
Building weight (seismic mass) was defined as: W = Dead load + Live load. These provisions were inspired by Japan's newly developed seismic code. The non-mandatory lateral design provisions are not known to have been explicitly adopted by any jurisdiction at the time, but may have been used voluntarily for the design of some buildings. [6]: 26
However, they are based on linear elastic response and hence the applicability decreases with increasing nonlinear behaviour, which is approximated by global force reduction factors. In linear dynamic analysis, the response of the structure to ground motion is calculated in the time domain , and all phase information is therefore maintained.
The same idea also forms the basis of the current common seismic design codes such as ASCE 7-10 and ASCE 7-16. Although the mentioned idea, i.e. reduction in the base shear, works well for linear soil-structure systems, it is shown that it cannot appropriately capture the effect of SSI on yielding systems. [7]
Seismic loading is one of the basic concepts of earthquake engineering which means application of an earthquake-generated agitation [1] to a structure.It happens at contact surfaces of a structure either with the ground, [2] or with adjacent structures, [3] or with gravity waves from tsunami.
Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes.With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged.