Search results
Results from the WOW.Com Content Network
Barotropic Rossby waves do not vary in the vertical [clarification needed], and have the fastest propagation speeds. The baroclinic wave modes, on the other hand, do vary in the vertical. They are also slower, with speeds of only a few centimeters per second or less. [5] Most investigations of Rossby waves have been done on those in Earth's ...
For example, a Rossby wave is an eddy [3] which is an undulation that is a deviation from mean flow, but does not have the local closed streamlines of a vortex. Swirl and eddies in engineering [ edit ]
Each large meander, or wave, within the jet stream is known as a Rossby wave (planetary wave). Rossby waves are caused by changes in the Coriolis effect with latitude. [26] Shortwave troughs, are smaller scale waves superimposed on the Rossby waves, with a scale of 1,000 to 4,000 kilometres (600–2,500 mi) long, [27] that move along through ...
The outflow of air mass from the cell creates harmonic waves in the atmosphere known as Rossby waves. These ultra-long waves determine the path of the polar jet stream, which travels within the transitional zone between the tropopause and the Ferrel cell. By acting as a heat sink, the polar cell moves the abundant heat from the equator toward ...
For very long waves (as the zonal wavenumber approaches zero), the non-dispersive phase speed is approximately: / = / (+), which indicates that these long equatorial Rossby waves move in the opposite direction (westward) of Kelvin waves (which move eastward) with speeds reduced by factors of 3, 5, 7, etc.
Topographic Rossby waves are one of two types of geophysical waves named after the meteorologist Carl-Gustaf Rossby. The other type of Rossby waves are called planetary Rossby waves and have a different physical origin. Planetary Rossby waves form due to the changing Coriolis parameter over the earth. Rossby waves are quasi-geostrophic ...
Atmospheric waves, associated with a small dust storm of north western Africa on 23 September 2011. An atmospheric wave is a periodic disturbance in the fields of atmospheric variables (like surface pressure or geopotential height, temperature, or wind velocity) which may either propagate (traveling wave) or be stationary (standing wave).
The planetary wave activity in both hemispheres varies year-to-year, producing a corresponding response in the strength and temperature of the polar vortex. [30] The number of waves around the perimeter of the vortex are related to the core size; as the vortex core decreases, the number of waves increase. [31]