enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Properties of metals, metalloids and nonmetals - Wikipedia

    en.wikipedia.org/wiki/Properties_of_metals...

    The characteristic properties of elemental metals and nonmetals are quite distinct, as shown in the table below. Metalloids, straddling the metal-nonmetal border , are mostly distinct from either, but in a few properties resemble one or the other, as shown in the shading of the metalloid column below and summarized in the small table at the top ...

  3. Metalloid - Wikipedia

    en.wikipedia.org/wiki/Metalloid

    The above table reflects the hybrid nature of metalloids. The properties of form, appearance, and behaviour when mixed with metals are more like metals. Elasticity and general chemical behaviour are more like nonmetals. Electrical conductivity, band structure, ionization energy, electronegativity, and oxides are intermediate between the two.

  4. Post-transition metal - Wikipedia

    en.wikipedia.org/wiki/Post-transition_metal

    The B-subgroup metals can be subdivided into pseudo metals and hybrid metals. The pseudo metals (groups 12 and 13, including boron) are said to behave more like true metals (groups 1 to 11) than non-metals. The hybrid metals As, Sb, Bi, Te, Po, At — which other authors would call metalloids — partake about equally the properties of both.

  5. Properties of nonmetals (and metalloids) by group - Wikipedia

    en.wikipedia.org/wiki/Properties_of_nonmetals...

    Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...

  6. Lists of metalloids - Wikipedia

    en.wikipedia.org/wiki/Lists_of_metalloids

    The elements commonly classified as metalloids are boron, silicon, germanium, arsenic, antimony and tellurium. [n 4] The status of polonium and astatine is not settled. Most authors recognise one or the other, or both, as metalloids; Herman, Hoffmann and Ashcroft, on the basis of relativistic modelling, predict astatine will be a monatomic metal.

  7. Dividing line between metals and nonmetals - Wikipedia

    en.wikipedia.org/wiki/Dividing_line_between...

    This line has been called the amphoteric line, [2] the metal-nonmetal line, [3] the metalloid line, [4] [5] the semimetal line, [6] or the staircase. [2] [n 1] While it has also been called the Zintl border [8] or the Zintl line [9] [10] these terms instead refer to a vertical line sometimes drawn between groups 13 and 14.

  8. List of alternative nonmetal classes - Wikipedia

    en.wikipedia.org/wiki/List_of_alternative...

    A similar progression is seem among the metals. Metallic bonding tends to involve close-packed centrosymmetric structures with a high number of nearest neighbours. Post-transition metals and metalloids, sandwiched between the true metals and the nonmetals, tend to have more complex structures with an intermediate number of nearest neighbours

  9. Transition metal - Wikipedia

    en.wikipedia.org/wiki/Transition_metal

    These properties are due to metallic bonding by delocalized d electrons, leading to cohesion which increases with the number of shared electrons. However the group 12 metals have much lower melting and boiling points since their full d subshells prevent d–d bonding, which again tends to differentiate them from the accepted transition metals.