Search results
Results from the WOW.Com Content Network
Bases are ubiquitous throughout topology. The sets in a base for a topology, which are called basic open sets, are often easier to describe and use than arbitrary open sets. [1] Many important topological definitions such as continuity and convergence can be checked using only basic open sets instead of arbitrary open sets. Some topologies have ...
The standard topology on is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set.
A base (or basis) B for a topological space X with topology T is a collection of open sets in T such that every open set in T can be written as a union of elements of B. [3] [4] We say that the base generates the topology T. Bases are useful because many properties of topologies can be reduced to statements about a base that generates that ...
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms.
An open (resp. closed) map f : X → Y remains open (resp. closed) if the topology on Y becomes finer or the topology on X coarser. One can also compare topologies using neighborhood bases. Let τ 1 and τ 2 be two topologies on a set X and let B i (x) be a local base for the topology τ i at x ∈ X for i = 1,2.
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .