Search results
Results from the WOW.Com Content Network
If the Tukey lambda PPCC plot gives a maximum value near 0.14, one can reasonably conclude that the normal distribution is a good model for the data. If the maximum value is less than 0.14, a long-tailed distribution such as the double exponential or logistic would be a better choice. If the maximum value is near −1, this implies the ...
Since the Tukey lambda distribution is a symmetric distribution, the use of the Tukey lambda PPCC plot to determine a reasonable distribution to model the data only applies to symmetric distributions. A histogram of the data should provide evidence as to whether the data can be reasonably modeled with a symmetric distribution. [4]
Interpretation of PAE values allows scientists to understand the level of confidence in the predicted structure of a protein: Lower PAE values between residue pairs from different domains indicate that the model predicts well-defined relative positions and orientations for those domains.
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
"Trends in Applied Econometrics Software Development 1985–2008: An Analysis of Journal of Applied Econometrics Research Articles, Software Reviews, Data and Code". Palgrave Handbook of Econometrics .
High-level synthesis (HLS), sometimes referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis, is an automated design process that takes an abstract behavioral specification of a digital system and finds a register-transfer level structure that realizes the given behavior.
An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree.This can be seen as a structured prediction problem [2] in which the structured output domain is the set of all possible parse trees.
The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots.