Search results
Results from the WOW.Com Content Network
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.
Two elements and of a partially ordered set are called comparable if . If two elements are not comparable, they are called incomparable; that is, x {\displaystyle x} and y {\displaystyle y} are incomparable if neither x ≤ y nor y ≤ x . {\displaystyle x\leq y{\text{ nor }}y\leq x.}
The least and greatest element of the whole partially ordered set play a special role and are also called bottom (⊥) and top (⊤), or zero (0) and unit (1), respectively. If both exist, the poset is called a bounded poset.
In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...
A given partially ordered set may have several different completions. For instance, one completion of any partially ordered set S is the set of its downwardly closed subsets ordered by inclusion. S is embedded in this (complete) lattice by mapping each element x to the lower set of elements that are less than or equal to x.
Total orders, orderings that specify, for every two distinct elements, which one is less than the other; Weak orders, generalizations of total orders allowing ties (represented either as equivalences or, in strict weak orders, as transitive incomparabilities) Well-orders, total orders in which every non-empty subset has a least element