Search results
Results from the WOW.Com Content Network
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function.
The fact that the complement of a perfect graph is also perfect is the perfect graph theorem of László Lovász. [4] Cographs are defined as the graphs that can be built up from single vertices by disjoint union and complementation operations. They form a self-complementary family of graphs: the complement of any cograph is another different ...
In the branch of mathematics called functional analysis, a complemented subspace of a topological vector space, is a vector subspace for which there exists some other vector subspace of , called its (topological) complement in , such that is the direct sum in the category of topological vector spaces.
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...
The graph of the 3-3 duoprism (the line graph of ,) is perfect.Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph.
An n-vertex self-complementary graph has exactly half as many edges of the complete graph, i.e., n(n − 1)/4 edges, and (if there is more than one vertex) it must have diameter either 2 or 3. [1] Since n(n − 1) must be divisible by 4, n must be congruent to 0 or 1 modulo 4; for instance, a 6-vertex graph cannot be self-complementary.
Complement the result if there is no carry out of the most significant digit (an indication that x was less than y). This is easier to implement with digital circuits than comparing and swapping the operands. But since taking the radix complement requires adding 1, it is difficult to do directly.