enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  3. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    In quantum mechanics, action and quantum-mechanical phase are related via the Planck constant, and the principle of stationary action can be understood in terms of constructive interference of wave functions. In 1948, Feynman discovered the path integral formulation extending the principle of least action to quantum mechanics for electrons and ...

  4. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    The names of action principles have evolved over time and differ in details of the endpoints of the paths and the nature of the variation. Quantum action principles generalize and justify the older classical principles. Action principles are the basis for Feynman's version of quantum mechanics, general relativity and quantum field theory.

  5. The Classic Principle of Least Action Now Exists in the ...

    www.aol.com/lifestyle/classic-principle-least...

    For premium support please call: 800-290-4726 more ways to reach us

  6. Maupertuis's principle - Wikipedia

    en.wikipedia.org/wiki/Maupertuis's_principle

    In classical mechanics, Maupertuis's principle (named after Pierre Louis Maupertuis, 1698 – 1759) states that the path followed by a physical system is the one of least length (with a suitable interpretation of path and length). [1] It is a special case of the more generally stated principle of least action.

  7. Theoretical motivation for general relativity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_motivation_for...

    The principle of least action states that the world line between two events in spacetime is that world line that minimizes the action between the two events. In classical mechanics the principle of least action is used to derive Newton's laws of motion and is the basis for Lagrangian dynamics. In relativity it is expressed as

  8. Fermat's principle - Wikipedia

    en.wikipedia.org/wiki/Fermat's_principle

    Fermat's solution was a landmark in that it unified the then-known laws of geometrical optics under a variational principle or action principle, setting the precedent for the principle of least action in classical mechanics and the corresponding principles in other fields (see History of variational principles in physics). [42]

  9. Scientific law - Wikipedia

    en.wikipedia.org/wiki/Scientific_law

    The action is a functional rather than a function, since it depends on the Lagrangian, and the Lagrangian depends on the path q(t), so the action depends on the entire "shape" of the path for all times (in the time interval from t 1 to t 2). Between two instants of time, there are infinitely many paths, but one for which the action is ...