Search results
Results from the WOW.Com Content Network
Temperature increase becomes relevant for relatively small-cross-sections wires, where it may affect normal semiconductor behavior. Besides, since the generation of heat is proportional to the frequency of operation for switching circuits, fast computers have larger heat generation than slow ones, an undesired effect for chips manufacturers.
A heat sink (also commonly spelled heatsink, [1]) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature.
Heat sinks function by efficiently transferring thermal energy ("heat") from an object at high temperature to a second object at a lower temperature with a much greater heat capacity. This rapid transfer of thermal energy quickly brings the first object into thermal equilibrium with the second, lowering the temperature of the first object ...
A thermal interface material (shortened to TIM) is any material that is inserted between two components in order to enhance the thermal coupling between them [1].A common use is heat dissipation, in which the TIM is inserted between a heat-producing device (e.g. an integrated circuit) and a heat-dissipating device (e.g. a heat sink).
Rca (°C/W) = Thermal resistance of the Heat sink, between the case of the CPU and the ambient air. Tc = Maximum allowed temperature of the CPU's case (ensuring full performances). Ta = Maximum expected ambient temperature at the inlet of the Heat sink fan. All these parameters are linked together by the following equation:
Transport heat to a remote heat sink with minimum temperature drop; Isothermalize a natural convection heat sink, increasing its efficiency and reducing its size. In one case, adding five heat pipes reduced the heat sink mass by 34%, from 4.4 kg to 2.9 kg. [7]
In research-quality instruments, thermostat/heat sink temperature is typically accurate to < ±0.1 K and maintained within ca. < ±100 μK/24h. The precision with which heat sink temperature is maintained over time is a major determinant of the precision of the heat flow measurements over time. An advantage of hc mode is a large dynamic range.
A unit increment of one kelvin is exactly 1.8 times one degree Rankine; thus, to convert a specific temperature on the Kelvin scale to the Rankine scale, x K = 1.8 x °R, and to convert from a temperature on the Rankine scale to the Kelvin scale, x °R = x /1.8 K. Consequently, absolute zero is "0" for both scales, but the melting point of ...