Search results
Results from the WOW.Com Content Network
A logical spreadsheet is a spreadsheet in which formulas take the form of logical constraints rather than function definitions.. In traditional spreadsheet systems, such as Excel, cells are partitioned into "directly specified" cells and "computed" cells and the formulas used to specify the values of computed cells are "functional", i.e. for every combination of values of the directly ...
propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
R-diagrams can be used to easily simplify complicated logical expressions, using a step-by-step process. Using order of operations, logical operators are applied to R-diagrams in the proper sequence. Finally, the result is an R-diagram that can be converted back into a simpler logical expression. For example, take the following expression:
Wherever logic is applied, especially in mathematical discussions, it has the same meaning as above: it is an abbreviation for if and only if, indicating that one statement is both necessary and sufficient for the other. This is an example of mathematical jargon (although, as noted above, if is more often used than iff in statements of definition).
are two different sentences that make the same statement. In either case, a statement is viewed as a truth bearer. Examples of sentences that are (or make) true statements: "Socrates is a man." "A triangle has three sides." "Madrid is the capital of Spain." Examples of sentences that are also statements, even though they aren't true:
Propositional logic, as currently studied in universities, is a specification of a standard of logical consequence in which only the meanings of propositional connectives are considered in evaluating the conditions for the truth of a sentence, or whether a sentence logically follows from some other sentence or group of sentences. [2]
compound statement A statement in logic that is formed by combining two or more statements with logical connectives, allowing for the construction of more complex statements from simpler ones. [67] [68] comprehension schema A principle in set theory and logic allowing for the formation of sets based on a defining property or condition.
In logic, the logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system.