Search results
Results from the WOW.Com Content Network
In mathematics, a rod group is a three-dimensional line group whose point group is one of the axial crystallographic point groups. This constraint means that the point group must be the symmetry of some three-dimensional lattice. Table of the 75 rod groups, organized by crystal system or lattice type, and by their point groups:
The latter means, that enantiomorphic point groups describe chiral (enantiomorphic) structures. In the current table, "enantiomorphic" means that a group itself (considered as a geometric object) is enantiomorphic, like enantiomorphic pairs of three-dimensional space groups P3 1 and P3 2, P4 1 22 and P4 3 22. Starting from four-dimensional ...
In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of ...
Download as PDF; Printable version ... (two-fold rotational) symmetry. A common chiral case is the point group C 1, ... equal amounts of the enantiomorphic crystals ...
The table below organizes the space groups of the monoclinic crystal system by crystal class. It lists the International Tables for Crystallography space group numbers, [ 2 ] followed by the crystal class name, its point group in Schoenflies notation , Hermann–Mauguin (international) notation , orbifold notation, and Coxeter notation, type ...
In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have inversion symmetry. [2] Point reflection is a similar
The triclinic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number, [1] orbifold, type, and space groups are listed in the table below. There are a total of 2 space groups. #
All of the discrete point symmetries are subgroups of certain continuous symmetries. They can be classified as products of orthogonal groups O(n) or special orthogonal groups SO(n). O(1) is a single orthogonal reflection, dihedral symmetry order 2, Dih 1. SO(1) is just the identity. Half turns, C 2, are needed to complete.