enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rod group - Wikipedia

    en.wikipedia.org/wiki/Rod_group

    In mathematics, a rod group is a three-dimensional line group whose point group is one of the axial crystallographic point groups. This constraint means that the point group must be the symmetry of some three-dimensional lattice. Table of the 75 rod groups, organized by crystal system or lattice type, and by their point groups:

  3. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    The latter means, that enantiomorphic point groups describe chiral (enantiomorphic) structures. In the current table, "enantiomorphic" means that a group itself (considered as a geometric object) is enantiomorphic, like enantiomorphic pairs of three-dimensional space groups P3 1 and P3 2, P4 1 22 and P4 3 22. Starting from four-dimensional ...

  4. Crystallographic point group - Wikipedia

    en.wikipedia.org/wiki/Crystallographic_point_group

    In crystallography, a crystallographic point group is a three dimensional point group whose symmetry operations are compatible with a three dimensional crystallographic lattice. According to the crystallographic restriction it may only contain one-, two-, three-, four- and sixfold rotations or rotoinversions. This reduces the number of ...

  5. Enantiomer - Wikipedia

    en.wikipedia.org/wiki/Enantiomer

    Download as PDF; Printable version ... (two-fold rotational) symmetry. A common chiral case is the point group C 1, ... equal amounts of the enantiomorphic crystals ...

  6. Monoclinic crystal system - Wikipedia

    en.wikipedia.org/wiki/Monoclinic_crystal_system

    The table below organizes the space groups of the monoclinic crystal system by crystal class. It lists the International Tables for Crystallography space group numbers, [ 2 ] followed by the crystal class name, its point group in Schoenflies notation , Hermann–Mauguin (international) notation , orbifold notation, and Coxeter notation, type ...

  7. Centrosymmetry - Wikipedia

    en.wikipedia.org/wiki/Centrosymmetry

    In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have inversion symmetry. [2] Point reflection is a similar

  8. Triclinic crystal system - Wikipedia

    en.wikipedia.org/wiki/Triclinic_crystal_system

    The triclinic crystal system class names, examples, Schönflies notation, Hermann-Mauguin notation, point groups, International Tables for Crystallography space group number, [1] orbifold, type, and space groups are listed in the table below. There are a total of 2 space groups. #

  9. List of spherical symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_spherical_symmetry...

    All of the discrete point symmetries are subgroups of certain continuous symmetries. They can be classified as products of orthogonal groups O(n) or special orthogonal groups SO(n). O(1) is a single orthogonal reflection, dihedral symmetry order 2, Dih 1. SO(1) is just the identity. Half turns, C 2, are needed to complete.