Search results
Results from the WOW.Com Content Network
In general, the cause of a hyperchloremic metabolic acidosis is a loss of base, either a gastrointestinal loss or a renal loss [citation needed]. Gastrointestinal loss of bicarbonate (HCO − 3) [citation needed] Severe diarrhea (vomiting will tend to cause hypochloraemic alkalosis) Pancreatic fistula with loss of bicarbonate rich pancreatic fluid
High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap (a medical value based on the concentrations of ions in a patient's serum). Metabolic acidosis occurs when the body produces too much acid, or when the kidneys are not removing enough acid from the body. Several types of metabolic acidosis occur ...
Metabolic acidosis can lead to acidemia, which is defined as arterial blood pH that is lower than 7.35. [6] Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low to high.
Metabolic acidosis may result from either increased production of metabolic acids, such as lactic acid, or disturbances in the ability to excrete acid via the kidneys, such as either renal tubular acidosis or the acidosis of kidney failure, which is associated with an accumulation of urea and creatinine as well as metabolic acid residues of ...
When this happens the numerator is large, the denominator is small, and the result is a delta ratio which is high (>2). This means a combined high anion gap metabolic acidosis and a pre-existing either respiratory acidosis or metabolic alkalosis (causing the high bicarbonate) – i.e. a mixed acid–base metabolic acidosis. [citation needed]
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap.
Adolf Kussmaul referred to breathing when metabolic acidosis was sufficiently severe for the respiratory rate to be normal or reduced. [2] This definition is also followed by several other sources, [3] [4] including for instance Merriam-Webster, which defines Kussmaul breathing as "abnormally slow deep respiration characteristic of air hunger and occurring especially in acidotic states". [5]
Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. [1] In renal physiology, when blood is filtered by the kidney, the filtrate passes through the tubules of the nephron, allowing for exchange of salts, acid equivalents, and other solutes before it drains into the bladder as urine.