Search results
Results from the WOW.Com Content Network
Brouwer has confirmed by computation that the conjecture is valid for all graphs with at most 10 vertices. [1] It is also known that the conjecture is valid for any number of vertices if t = 1, 2, n − 1, and n. For certain types of graphs, Brouwer's conjecture is known to be valid for all t and for any number of vertices
The Brouwer–Haemers graph is the first in an infinite family of Ramanujan graphs defined as generalized Paley graphs over fields of characteristic three. [2] With the 3 × 3 {\displaystyle 3\times 3} Rook's graph and the Games graph , it is one of only three possible strongly regular graphs whose parameters have the form ( ( n 2 + 3 n − 1 ...
The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]
Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fully equivalent definition of a strongly regular graph based on spectral graph theory: a strongly regular graph is a finite regular graph that has exactly three eigenvalues, only one of which is equal to the degree k, of multiplicity 1.
The spectrum of T is the set of all complex numbers ζ such that R ζ fails to exist or is unbounded. Often the spectrum of T is denoted by σ(T). The function R ζ for all ζ in ρ(T) (that is, wherever R ζ exists as a bounded operator) is called the resolvent of T. The spectrum of T is therefore the complement of the resolvent set of T in ...
This page was last edited on 5 February 2019, at 23:59 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...
The layout uses the eigenvectors of a matrix, such as the Laplace matrix of the graph, as Cartesian coordinates of the graph's vertices. The idea of the layout is to compute the two largest (or smallest) eigenvalues and corresponding eigenvectors of the Laplacian matrix of the graph and then use those for actually placing the nodes.