Search results
Results from the WOW.Com Content Network
The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action.
A schematic symbol for Schottky diodes 1N5822 Schottky diode with cut-open packaging. The semiconductor in the center makes a Schottky barrier against one metal electrode (providing rectifying action) and an ohmic contact with the other electrode. SS14 schottky diode in DO-214AC (SMA) (SOD-106) surface-mount package version of 1N5819 [1]
A Schottky diode is a single metal–semiconductor junction, used for its rectifying properties. Schottky diodes are often the most suitable kind of diode when a low forward voltage drop is desired, such as in a high-efficiency DC power supply. Also, because of their majority-carrier conduction mechanism, Schottky diodes can achieve greater ...
The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. [ 23 ] [ 24 ] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [ 25 ]
Walter Hans Schottky (23 July 1886 – 4 March 1976) was a German physicist who played a major early role in developing the theory of electron and ion emission phenomena, [2] invented the screen-grid vacuum tube in 1915 while working at Siemens, [3] co-invented the ribbon microphone and ribbon loudspeaker along with Dr. Erwin Gerlach in 1924 [4] and later made many significant contributions in ...
Schottky diode symbol based on the EN standard (A - anode, K - cathode). Schaltzeichen einer Schottky-Diode (A - die Anode, K - die Kathode). Symbol diody Schottky'ego wzorowany na normach EN (A - anoda, K - katoda)
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [43] [44] A typical example is the 1N914.