Search results
Results from the WOW.Com Content Network
A bottle of Radithor at the National Museum of Nuclear Science & History in New Mexico, United States. Radithor was a patent medicine that is a well-known example of radioactive quackery. It consisted of triple-distilled water containing at a minimum 1 microcurie (37 kBq) each of the radium-226 and 228 isotopes.
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.
The p-n pair contributes implicitly to the top ten most abundant isotopes in the universe, eight of which contain equal numbers of protons and neutrons (see Oddo-Harkins rule and abundance of the elements). Conversely, the proton-proton and neutron-neutron bound states are unstable and therefore rarely found in nature.
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
In contrast, the proton numbers for which there are no stable isotopes are 43, 61, and 83 or more (83, 90, 92, and perhaps 94 have primordial radionuclides). [3] This is related to nuclear magic numbers , the number of nucleons forming complete shells within the nucleus, e.g. 2, 8, 20, 28, 50, 82, and 126.
An example is the stability of the closed shell of 50 protons, which allows tin to have 10 stable isotopes, more than any other element. Similarly, the distance from shell-closure explains the unusual instability of isotopes which have far from stable numbers of these particles, such as the radioactive elements 43 ( technetium ) and 61 ...