Search results
Results from the WOW.Com Content Network
Taking the inner product of each side of this equation with an arbitrary basis function u i (t), = () = = (), = =. This is the matrix multiplication Ab = c written in summation notation and is a matrix equivalent of the operator D acting upon the function f ( t ) expressed in the orthonormal basis.
which can be found by stacking into matrix form a set of equations consisting of the above difference equation and the k – 1 equations =, …, + = +, giving a k-dimensional system of the first order in the stacked variable vector [+] in terms of its once-lagged value, and taking the characteristic equation of this system's matrix.
This operator is invertible, and its inverse is compact and self-adjoint so that the usual spectral theorem can be applied to obtain the eigenspaces of Δ and the reciprocals 1/λ of its eigenvalues. One of the primary tools in the study of the Dirichlet eigenvalues is the max-min principle: the first eigenvalue λ 1 minimizes the Dirichlet ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
We call p(λ) the characteristic polynomial, and the equation, called the characteristic equation, is an N th-order polynomial equation in the unknown λ. This equation will have N λ distinct solutions, where 1 ≤ N λ ≤ N. The set of solutions, that is, the eigenvalues, is called the spectrum of A. [1] [2] [3]
This basis can be used to determine an "almost diagonal matrix" in Jordan normal form, similar to , which is useful in computing certain matrix functions of . [9] The matrix J {\displaystyle J} is also useful in solving the system of linear differential equations x ′ = A x , {\displaystyle \mathbf {x} '=A\mathbf {x} ,} where A {\displaystyle ...
The number of known functions included in the expansion, the same as that of coefficients, is the dimension of the Hamiltonian matrix that will be generated. The statement of the theorem follows. [1] [2] Let an eigenvalue equation be solved by linearly expanding the unknown function in terms of N known functions.
A computation shows that the equation P −1 AP = J indeed holds. = = []. If we had interchanged the order in which the chain vectors appeared, that is, changing the order of v, w and {x, y} together, the Jordan blocks would be interchanged. However, the Jordan forms are equivalent Jordan forms.