Search results
Results from the WOW.Com Content Network
The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon , or in the special case n = 4 , a cyclic quadrilateral .
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
The nine-point center is the circumcenter of the medial triangle of the given triangle, the circumcenter of the orthic triangle of the given triangle, and the circumcenter of the Euler triangle. More generally it is the circumcenter of any triangle defined from three of the nine points defining the nine-point circle. [citation needed]
If the circumcenter is located inside the triangle, then the triangle is acute; if the circumcenter is located outside the triangle, then the triangle is obtuse. [22] An altitude of a triangle is a straight line through a vertex and perpendicular to the opposite side.
The orthopole of lines passing through the circumcenter lie on the nine-point circle. A triangle's circumcircle, its nine-point circle, its polar circle, and the circumcircle of its tangential triangle [9] are coaxal. [10] Trilinear coordinates for the center of the Kiepert hyperbola are
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. This resource is hosted at the University of Evansville . It started from a list of 400 triangle centers published in the 1998 book Triangle Centers and Central Triangles by Professor Clark Kimberling .
Here is a definition of triangle geometry from 1887: "Being given a point M in the plane of the triangle, we can always find, in an infinity of manners, a second point M' that corresponds to the first one according to an imagined geometrical law; these two points have between them geometrical relations whose simplicity depends on the more or ...