enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wikipedia:Historical archive/How to draw a diagram with ...

    en.wikipedia.org/wiki/Wikipedia:Historical...

    For help on the process, see Wikipedia:How to draw a diagram with Inkscape. This tutorial aims to instruct a beginner on the basic principles of vector graphics using Microsoft Word (Office 97 or later). The basic principles are the same in other drawing programs such as CorelDraw or the free and open source OpenOffice.org.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The eigenspaces of T always form a direct sum. As a consequence, eigenvectors of different eigenvalues are always linearly independent. Therefore, the sum of the dimensions of the eigenspaces cannot exceed the dimension n of the vector space on which T operates, and there cannot be more than n distinct eigenvalues. [d]

  5. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

  6. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  7. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Two Hermitian matrices commute if their eigenspaces coincide. In particular, two Hermitian matrices without multiple eigenvalues commute if they share the same set of eigenvectors. This follows by considering the eigenvalue decompositions of both matrices. Let and be two Hermitian matrices.

  8. Arnold's cat map - Wikipedia

    en.wikipedia.org/wiki/Arnold's_cat_map

    The eigenspaces are orthogonal because the matrix is symmetric. Since the eigenvectors have rationally independent components both the eigenspaces densely cover the torus. Arnold's cat map is a particularly well-known example of a hyperbolic toral automorphism , which is an automorphism of a torus given by a square unimodular matrix having no ...

  9. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Eigenvectors of a normal operator corresponding to different eigenvalues are orthogonal, and a normal operator stabilizes the orthogonal complement of each of its eigenspaces. [3] This implies the usual spectral theorem: every normal operator on a finite-dimensional space is diagonalizable by a unitary operator.