enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    In neutron stars, the neutron drip is the transition point where nuclei become so neutron-rich that they can no longer hold additional neutrons, leading to a sea of free neutrons being formed. The sea of neutrons formed after neutron drip provides additional pressure support, which helps maintain the star's structural integrity and prevents ...

  3. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Therefore, a black body is a perfect Lambertian radiator. Real objects never behave as full-ideal black bodies, and instead the emitted radiation at a given frequency is a fraction of what the ideal emission would be. The emissivity of a material specifies how well a real body radiates energy as compared with a black body. This emissivity ...

  4. Supernova neutrinos - Wikipedia

    en.wikipedia.org/wiki/Supernova_Neutrinos

    A massive star collapses at the end of its life, emitting on the order of 10 58 neutrinos and antineutrinos in all lepton flavors. [2] The luminosity of different neutrino and antineutrino species are roughly the same. [3] They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds.

  5. Supernova - Wikipedia

    en.wikipedia.org/wiki/Supernova

    However, if the release of gravitational potential energy is insufficient, the star may instead collapse into a black hole or neutron star with little radiated energy. [ 104 ] Core collapse can be caused by several different mechanisms: exceeding the Chandrasekhar limit ; electron capture ; pair-instability ; or photodisintegration .

  6. Pulsar - Wikipedia

    en.wikipedia.org/wiki/Pulsar

    If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter. The matter falling onto the neutron star spins it up and reduces its magnetic field.

  7. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.

  8. Stellar magnetic field - Wikipedia

    en.wikipedia.org/wiki/Stellar_magnetic_field

    The magnetic field of a newly born fast-spinning neutron star is so strong (up to 10 8 teslas) that it electromagnetically radiates enough energy to quickly (in a matter of few million years) damp down the star rotation by 100 to 1000 times. Matter falling on a neutron star also has to follow the magnetic field lines, resulting in two hot spots ...

  9. Pair-instability supernova - Wikipedia

    en.wikipedia.org/wiki/Pair-instability_supernova

    Photons given off by a body in thermal equilibrium have a black-body spectrum with an energy density proportional to the fourth power of the temperature, as described by the Stefan–Boltzmann law. Wien's law states that the wavelength of maximum emission from a black body is inversely proportional to its temperature. Equivalently, the ...