Search results
Results from the WOW.Com Content Network
An enantiopure drug is a pharmaceutical that is available in one specific enantiomeric form. Most biological molecules (proteins, sugars, etc.) are present in only one of many chiral forms, so different enantiomers of a chiral drug molecule bind differently (or not at all) to target receptors.
The eutomer is the enantiomer having the desired pharmacological activity, [4] e.g., as an active ingredient in a drug. The distomer , on the other hand, is the enantiomer of the eutomer which may have undesired bioactivity or may be bio-inert.
An example of such an enantiomer is the sedative thalidomide, which was sold in a number of countries around the world from 1957 until 1961. It was withdrawn from the market when it was found to cause birth defects. One enantiomer caused the desirable sedative effects, while the other, unavoidably [23] present in equal quantities, caused birth ...
In chemistry, racemization is a conversion, by heat or by chemical reaction, of an optically active compound into a racemic (optically inactive) form. This creates a 1:1 molar ratio of enantiomers and is referred to as a racemic mixture (i.e. contain equal amount of (+) and (−) forms).
The drug was withdrawn from world market when it became evident that the use in pregnancy causes phocomelia (clinical conditions where babies are born with deformed hand and limbs). Later in late 1970s studies indicated that the (R)- enantiomer is an effective sedative, the (S)-enantiomer harbors teratogenic effect and causes fetal abnormalities.
Arketamine (developmental code names PCN-101, HR-071603), also known as (R)-ketamine or (R)-(−)-ketamine, is the (R)-(−) enantiomer of ketamine. [1] [2] [3] Similarly to racemic ketamine and esketamine, the S(+) enantiomer of ketamine, arketamine is biologically active; however, it is less potent as an NMDA receptor antagonist and anesthetic and thus has never been approved or marketed for ...
Erythrose is a tetrose saccharide with the chemical formula C 4 H 8 O 4. It has one aldehyde group, and is thus part of the aldose family. The natural isomer is D-erythrose; it is a diastereomer of D-threose. [3] Fischer projections depicting the two enantiomers of erythrose
As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l -Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory. l -Glucose is indistinguishable in taste from d -glucose, [ 1 ] but cannot be used by living organisms as a source of energy because it cannot be phosphorylated by ...