Search results
Results from the WOW.Com Content Network
Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy [1] or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. [2]
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.
To escape the atom, the energy of the electron must be increased above its binding energy to the atom. This occurs, for example, with the photoelectric effect, where an incident photon exceeding the atom's ionization energy is absorbed by the electron. [124]: 127–132 The orbital angular momentum of electrons is quantized. Because the electron ...
The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the ground state, has the lowest energy of all states in the system. In atomic physics and chemistry , an atomic electron transition (also called an atomic transition, quantum jump, or quantum leap) is an electron changing from one ...
When a core electron is removed, leaving a vacancy, an electron from a higher energy level may fall into the vacancy, resulting in a release of energy. For light atoms (Z<12), this energy is most often transferred to a valence electron which is subsequently ejected from the atom. [2] This second ejected electron is called an Auger electron. [3]
[10] [11] In order to avoid an erroneous interpretation of the phenomenon that is always a nonradiative transfer of energy (even when occurring between two fluorescent chromophores), the name "Förster resonance energy transfer" is preferred to "fluorescence resonance energy transfer"; however, the latter enjoys common usage in scientific ...
In Marcus theory the energy belonging to the transfer of a unit charge (Δe = 1) is called the (outer sphere) reorganization energy λ o, i.e. the energy of a state where the polarization would correspond to the transfer of a unit amount of charge, but the real charge distribution is that before the transfer. [9]
The Dexter energy transfer rate, , is indicated by the formula: = ′ [] where is the separation of the donor from the acceptor, is the sum of the Van der Waals radii of the donor and the acceptor, and ′ is the normalized spectral overlap integral, where normalized means that both emission intensity and extinction coefficient have been adjusted to unit area.