Search results
Results from the WOW.Com Content Network
The Ostwald law of dilution provides a satisfactory description of the concentration dependence of the conductivity of weak electrolytes like CH 3 COOH and NH 4 OH. [3] [4] The variation of molar conductivity is essentially due to the incomplete dissociation of weak electrolytes into ions.
In this case there is no limit of dilution below which the relationship between conductivity and concentration becomes linear. Instead, the solution becomes ever more fully dissociated at weaker concentrations, and for low concentrations of "well behaved" weak electrolytes, the degree of dissociation of the weak electrolyte becomes proportional ...
V Secret Catalogue, Inc., 537 U.S. 418 (2003), is a decision by the Supreme Court of the United States holding that, under the Federal Trademark Dilution Act, a claim of trademark dilution requires proof of actual dilution, not merely a likelihood of dilution. [1] This decision was later superseded by the Trademark Dilution Revision Act of 2006 ...
This gives a = 100 μg/mL if the drug stays in the blood stream only, and thus its volume of distribution is the same as that is = 0.08 L/kg. If the drug distributes into all body water the volume of distribution would increase to approximately V D = {\displaystyle V_{D}=} 0.57 L/kg [ 8 ]
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
For some users, the following may create a greater ammount of understanding/clarity, in addition to just having a formula. For any weak electrolyte, Ostwald's dilution law states that the degree of dissociation is inversely proportional to square root of the molar concentration and is directly proportional to the square root of the volume containing one mole of electrolyte.
The dilution in welding terms is defined as the weight of the base metal melted divided by the total weight of the weld metal. For example, if we have a dilution of 0.40, the fraction of the weld metal that came from the consumable electrode is 0.60.
The following formulas can be used to calculate the volumes of solute (V solute) and solvent (V solvent) to be used: [1] = = where V total is the desired total volume, and F is the desired dilution factor number (the number in the position of F if expressed as "1/F dilution factor" or "xF dilution"). However, some solutions and mixtures take up ...