enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = ⁡, where θ is the angle between the two unit vectors, and is also the angle between u and v.

  3. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Illustration showing how to find the angle between vectors using the dot product Calculating bond angles of a symmetrical tetrahedral molecular geometry using a dot product. In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow.

  4. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another. In some cases, the inner product coincides with the dot product.

  5. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The angle between two term frequency vectors cannot be greater than 90°. If the attribute vectors are normalized by subtracting the vector means (e.g., ¯), the measure is called the centered cosine similarity and is equivalent to the Pearson correlation coefficient. For an example of centering,

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Direction (geometry) - Wikipedia

    en.wikipedia.org/wiki/Direction_(geometry)

    Examples of two 2D direction vectors. A direction is used to represent linear objects such as axes of rotation and normal vectors. A direction may be used as part of the representation of a more complicated object's orientation in physical space (e.g., axis–angle representation). Two airplanes in parallel (and opposite) directions.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  9. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The angle between two planes (such as two adjacent faces of a polyhedron) is called a dihedral angle. [18] It may be defined as the acute angle between two lines normal to the planes. The angle between a plane and an intersecting straight line is complementary to the angle between the intersecting line and the normal to the plane.