enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direction cosine - Wikipedia

    en.wikipedia.org/wiki/Direction_cosine

    If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = ⁡, where θ is the angle between the two unit vectors, and is also the angle between u and v.

  3. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    Illustration showing how to find the angle between vectors using the dot product Calculating bond angles of a symmetrical tetrahedral molecular geometry using a dot product. In Euclidean space, a Euclidean vector is a geometric object that possesses both a magnitude and a direction. A vector can be pictured as an arrow.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Another case is when two sides and the angle between them are known and the rest are unknown. We multiply one of the sides by the sine of the [known] angle one time and by the sine of its complement the other time converted and we subtract the second result from the other side if the angle is acute and add it if the angle is obtuse.

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. We have u · u = 1, v · w = cos c, u · v = cos a, and u · w = cos b.The vectors u × v and u × w have lengths sin a and sin b respectively and the angle between them is C, so ⁡ ⁡ ⁡ = () = () () = ⁡ ⁡ ⁡

  6. Angle - Wikipedia

    en.wikipedia.org/wiki/Angle

    The angle between two planes (such as two adjacent faces of a polyhedron) is called a dihedral angle. [18] It may be defined as the acute angle between two lines normal to the planes. The angle between a plane and an intersecting straight line is complementary to the angle between the intersecting line and the normal to the plane.

  7. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The normalized angle, referred to as angular distance, between any two vectors and is a formal distance metric and can be calculated from the cosine similarity. [5] The complement of the angular distance metric can then be used to define angular similarity function bounded between 0 and 1, inclusive.

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Direction (geometry) - Wikipedia

    en.wikipedia.org/wiki/Direction_(geometry)

    Examples of two 2D direction vectors. A direction is used to represent linear objects such as axes of rotation and normal vectors. A direction may be used as part of the representation of a more complicated object's orientation in physical space (e.g., axis–angle representation). Two airplanes in parallel (and opposite) directions.