Search results
Results from the WOW.Com Content Network
The expression is a regular splitting of A if and only if B −1 ≥ 0 and C ≥ 0, that is, B −1 and C have only nonnegative entries. If the splitting is a regular splitting of the matrix A and A −1 ≥ 0, then ρ(T) < 1 and T is a convergent matrix. Hence the method converges. [12] [13]
A(standard) is the peak area of analyte in the absence of matrix. The concentration of analyte in both standards should be the same. A matrix effect value close to 100 indicates absence of matrix influence. A matrix effect value of less than 100 indicates suppression, while a value larger than 100 is a sign of matrix enhancement.
A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix
If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In chemistry a convergent synthesis is a strategy that aims to improve the efficiency of multistep synthesis, most often in organic synthesis. In this type of synthesis several individual pieces of a complex molecule are synthesized in stage one, and then in stage two these pieces are combined to form the final product. [ 1 ]
For example, in an aligned DNA sequence matrix, all of the A, G, C, T or implied gaps at a given nucleotide site are homologous in this way. Character state identity is the hypothesis that the particular condition in two or more taxa is "the same" as far as our character coding scheme is concerned.
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.
It can also be applied to a power series with radius of convergence R ≠ 1 by a simple change of variables ζ = z/R. [2] Notice that Abel's test is a generalization of the Leibniz Criterion by taking z = −1. Proof of Abel's test: Suppose that z is a point on the unit circle, z ≠ 1. For each , we define