enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential linear-quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_linear...

    In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.

  3. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  4. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    The GEKKO Python package [1] solves large-scale mixed-integer and differential algebraic equations with nonlinear programming solvers (IPOPT, APOPT, BPOPT, SNOPT, MINOS). Modes of operation include machine learning, data reconciliation, real-time optimization, dynamic simulation, and nonlinear model predictive control .

  5. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [1] on problems that can be solved by alternative methods. [2] The Nelder–Mead technique was proposed by John Nelder and Roger Mead in 1965, [3] as a development of the method of Spendley et al. [4]

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This represents the value (or values) of the argument x in the interval (−∞,−1] that minimizes (or minimize) the objective function x 2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = −1, since x = 0 is infeasible, that is, it does not belong to the feasible set. Similarly,

  7. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    To see this, note that the two constraints x 1 (x 11) ≤ 0 and x 1 (x 11) ≥ 0 are equivalent to the constraint x 1 (x 11) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained ...

  8. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    An alternative approach is the compact representation, which involves a low-rank representation for the direct and/or inverse Hessian. [6] This represents the Hessian as a sum of a diagonal matrix and a low-rank update. Such a representation enables the use of L-BFGS in constrained settings, for example, as part of the SQP method.

  9. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    [1] The method is useful for calculating the local minimum of a continuous but complex function, especially one without an underlying mathematical definition, because it is not necessary to take derivatives. The basic algorithm is simple; the complexity is in the linear searches along the search vectors, which can be achieved via Brent's method.