enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization, also known as Lagrange-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  3. Sequential linear-quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_linear...

    In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.

  4. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [1] on problems that can be solved by alternative methods. [2] The Nelder–Mead technique was proposed by John Nelder and Roger Mead in 1965, [3] as a development of the method of Spendley et al. [4]

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    [6] Ye and Tse [7] present a polynomial-time algorithm, which extends Karmarkar's algorithm from linear programming to convex quadratic programming. On a system with n variables and L input bits, their algorithm requires O(L n) iterations, each of which can be done using O(L n 3) arithmetic operations, for a total runtime complexity of O(L 2 n 4).

  6. Lawler's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lawler's_algorithm

    Lawler's algorithm is an efficient algorithm for solving a variety of constrained scheduling problems, particularly single-machine scheduling. [1] It can handle precedence constraints between jobs, requiring certain jobs to be completed before other jobs can be started.

  7. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This represents the value (or values) of the argument x in the interval (−∞,−1] that minimizes (or minimize) the objective function x 2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = −1, since x = 0 is infeasible, that is, it does not belong to the feasible set. Similarly,

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  9. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    An alternative approach is the compact representation, which involves a low-rank representation for the direct and/or inverse Hessian. [6] This represents the Hessian as a sum of a diagonal matrix and a low-rank update. Such a representation enables the use of L-BFGS in constrained settings, for example, as part of the SQP method.