Search results
Results from the WOW.Com Content Network
Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [ note 1 ] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.
A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector (that is, the dimension of the domain could be 1 or greater than 1); the ...
In a vector space, the null vector is the neutral element of vector addition; depending on the context, a null vector may also be a vector mapped to some null by a function under consideration (such as a quadratic form coming with the vector space, see null vector, a linear mapping given as matrix product or dot product, [4] a seminorm in a ...
In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 ...
A continuous function : from a non-empty and non-degenerate interval into a topological space is called a curve or a curve in . A path in X {\displaystyle X} is a curve in X {\displaystyle X} whose domain is compact while an arc or C 0 -arc in X {\displaystyle X} is a path in X {\displaystyle X} that is also a topological embedding .
Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W.If 0 W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0 W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0 W.
Vector optimization is a subarea of mathematical optimization where optimization problems with a vector-valued objective functions are optimized with respect to a given partial ordering and subject to certain constraints.