Ad
related to: electromagnetic field tensor lines are formed
Search results
Results from the WOW.Com Content Network
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
This is violated for Minkowski space with a line removed, which can model a (flat) spacetime with a point-like monopole on the complement of the line. In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1 ...
Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws. The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism ...
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] = (/ / / / / /) and the result of raising its indices is = = (/ / / / / /), where E is the electric field, B the magnetic field, and c the speed of light.
The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.
This is often described by saying that the electric field and magnetic field are two interrelated aspects of a single object, called the electromagnetic field. Indeed, the entire electromagnetic field can be represented in a single rank-2 tensor called the electromagnetic tensor; see below.
The algebraic classification of bivectors given above has an important application in relativistic physics: the electromagnetic field is represented by a skew-symmetric second rank tensor field (the electromagnetic field tensor) so we immediately obtain an algebraic classification of electromagnetic fields.
Ad
related to: electromagnetic field tensor lines are formed