enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  3. Text normalization - Wikipedia

    en.wikipedia.org/wiki/Text_normalization

    Text normalization is the process of transforming text into a single canonical form that it might not have had before. Normalizing text before storing or processing it allows for separation of concerns , since input is guaranteed to be consistent before operations are performed on it.

  4. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  5. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    Variable-width encodings in the Unicode standard, in particular UTF-8, may cause an additional need for canonicalization in some situations. Namely, by the standard, in UTF-8 there is only one valid byte sequence for any Unicode character, [ 1 ] but some byte sequences are invalid, i.e., they cannot be obtained by encoding any string of Unicode ...

  6. Don't repeat yourself - Wikipedia

    en.wikipedia.org/wiki/Don't_repeat_yourself

    "Don't repeat yourself" (DRY), also known as "duplication is evil", is a principle of software development aimed at reducing repetition of information which is likely to change, replacing it with abstractions that are less likely to change, or using data normalization which avoids redundancy in the first place.

  7. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  8. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers ...

  9. Spark NLP - Wikipedia

    en.wikipedia.org/wiki/Spark_NLP

    Spark NLP for Healthcare is a commercial extension of Spark NLP for clinical and biomedical text mining. [10] It provides healthcare-specific annotators, pipelines, models, and embeddings for clinical entity recognition, clinical entity linking, entity normalization, assertion status detection, de-identification, relation extraction, and spell checking and correction.